The unifying theme of my research has been the use of tools and concepts from physics to address biological questions. I aim to develop and implement sophisticated analysis and quantification methods to study living systems and its dynamic functional processes with focus on cardiac diseases, maturity and its correlation to mechanosensitivity in cells and tissues.

I focus on spatiotemporal and time-sensitive cell topology and signaling dynamics that interconnect the microscopic and macroscopic scales. Through these efforts I employ biology inspired materials, such as stimulus responsive hydrogels in combination with sophisticated computational analysis methods, i.e. three dimensional Delaunay triangulation algorithms to map and extract detailed cellular spatiotemporal signaling responses in single cells and tissues.

More specifically my research can be categorized in the four topics: Signal Transduction, Mechanosensitivity, Pattern Formations, and Celestial Dynamics. The latter topic was part of my Diploma thesis, which I do not work on anymore.

 

Signal Transduction

Here, we are interested in the signal transduction dynamics of single cell and confluent tissues. The two main types of cells that we are focus on are single Dictyostelium cells and confluent cardiomyocyte tissues. Investigations are combined through experimental, numerical and analytical approaches. 

 

 

Biomechanics

Here, we are interested in the mechanosensitive influence of the micro-environment during the development of cardiomyocyte tissues as well as the migration and proliferation dynamics of single myocytes. Investigations are combined through experimental, numerical and analytical approaches. 

 

 

Pattern Formation

Using a synergistic approach of numerical simulations and experiments with cardiomyocyte tissues we investigate the electrical and chemical wave formation of spontaneously formed and entrained patterns.

 

Planetary discs

Here, we studied the ice-grain dynamics that form the outer E-ring of Staturn. Enceladus, a moon of Saturn, is one of the main sources of these ice-grains. We implemented a realistic celestrial model of the E-ring system considering various different influences that form the ring-system, i.e. gravitation, plasma drag, etc. The ice-grain density data measured by a detector attached to the Cassini spacecraft that had a close flyby to Enceladus' south pole were used to scale the model. This work lead to my Diploma thesis in physics and two peer-reviewed articles.